Ancient solutions to the Ricci flow with pinched curvature
نویسندگان
چکیده
منابع مشابه
Ancient Solutions to Kähler-ricci Flow
In this paper, we prove that any non-flat ancient solution to KählerRicci flow with bounded nonnegative bisectional curvature has asymptotic volume ratio zero. We also classify all complete gradient shrinking solitons with nonnegative bisectional curvature. Both results generalize the corresponding earlier results of Perelman in [P1] and [P2]. The results then are applied to study the geometry ...
متن کاملCharacterization of Pinched Ricci Curvature by Functional Inequalities
ABSTRACT. In this article, functional inequalities for diffusion semigroups on Riemannian manifolds (possibly with boundary) are established, which are equivalent to pinched Ricci curvature, along with gradient estimates, Lp-inequalities and log-Sobolev inequalities. These results are further extended to differential manifolds carrying geometric flows. As application, it is shown that they can ...
متن کاملCollapsing sequences of solutions to the Ricci flow on 3-manifolds with almost nonnegative curvature
We shall prove a general result about sequences of solutions to the Ricci flow on compact or complete noncompact 3-manifolds with locally uniformly bounded almost nonnegative sectional curvatures and diameters tending to infinity. It is known that such sequences occur when one dilates about a singularity of a solution to the Ricci flow on a 3-manifold. Our main result assumes collapse and is co...
متن کاملRicci flow and manifolds with positive curvature
This is an expository article based on the author’s lecture delivered at the conference Lie Theory and Its Applications in March 2011, UCSD. We discuss various notions of positivity and their relations with the study of the Ricci flow, including a proof of the assertion, due to Wolfson and the author, that the Ricci flow preserves the positivity of the complex sectional curvature. We discuss th...
متن کاملMean Curvature Driven Ricci Flow
We obtain the evolution equations for the Riemann tensor, the Ricci tensor and the scalar curvature induced by the mean curvature flow. The evolution for the scalar curvature is similar to the Ricci flow, however, negative, rather than positive, curvature is preserved. Our results are valid in any dimension.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Duke Mathematical Journal
سال: 2011
ISSN: 0012-7094
DOI: 10.1215/00127094-1345672